23 research outputs found

    Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis

    Get PDF
    This work was supported by Marie Curie Postdoctoral Fellowships to T.A.W., E. H. and S. L., a European Research Council Advanced Investigator Grant (ERC-2010-AdG-268701) to T.M.E., and a Wellcome Trust Programme Grant (number 045404) to T.M.E. and J.M.L. R.L. acknowledges generous financial support from Deutsche Forschungsgemeinschaft (SFB 593, SFB 987, GRK 1216, LI 415/5), LOEWE program of state Hessen, Max-Planck Gesellschaft, von Behring-Röntgen StiftungMicrosporidians are a diverse group of obligate intracellular parasites that have minimized their genome content and simplified their sub-cellular structures by reductive evolution. Functional studies are limited because we lack reliable genetic tools for their manipulation. Here, we demonstrate that the cristae-deficient mitochondrion (mitosome) of the microsporidian Trachipleistophora hominis is the functional site of iron-sulphur cluster (ISC) assembly, which we suggest is the essential task of this organelle. Cell fractionation, fluorescence imaging and fine-scale immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe-2S] cluster biosynthesis that we biochemically reconstituted using purified recombinant mitosomal ISC proteins. Reconstitution proceeded as rapidly and efficiently as observed for yeast or fungal mitochondrial ISC components. Core components of the T. hominis cytosolic iron-sulphur protein assembly (CIA) pathway were also identified including the essential Cfd1-Nbp35 scaffold complex that assembles a [4Fe-4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that both the ISC and CIA biosynthetic pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of the Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides additional compelling evidence for the ancient chimeric ancestry of eukaryotes.Publisher PDFPeer reviewe

    In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). RESULTS: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. CONCLUSION: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models

    The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria

    No full text
    Formation of iron/sulfur (Fe/S) clusters, protein translocation and protein folding are essential processes in the mitochondria of Saccharomyces cerevisiae. In a systematic approach to characterize essential proteins involved in these processes, we identified a novel essential protein of the mitochondrial matrix, which is highly conserved from yeast to human and which we termed Isd11. Depletion of Isd11 caused a strong reduction in the levels of the Fe/S proteins aconitase and the Rieske protein, and a massive decrease in the enzymatic activities of aconitase and succinate dehydrogenase. Incorporation of iron into the Fe/S protein Leu1 and formation of the Fe/S cluster containing holoform of the mitochondrial ferredoxin Yah1 were inhibited in the absence of Isd11. This strongly suggests that Isd11 is required for the assembly of Fe/S proteins. We show that Isd11 forms a stable complex with Nfs1, the cysteine desulfurase of the mitochondrial machinery for Fe/S cluster assembly. In the absence of Isd11, Nfs1 is prone to aggregation. We propose that Isd11 acts together with Nfs1 in an early step in the biogenesis of Fe/S proteins

    The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2

    No full text
    Many metalloproteins have the capacity to bind diverse metals, but in living cells connect only with their cognate metal cofactor. In eukaryotes, this metal specificity can be achieved through metal-specific metallochaperone proteins. Herein, we describe a mechanism whereby Saccharomyces cerevisiae manganese superoxide dismutase (SOD2) preferentially binds manganese over iron based on the differential bioavailability of these ions within mitochondria. The bulk of mitochondrial iron is normally unavailable to SOD2, but when mitochondrial iron homeostasis is disrupted, for example, by mutations in S. cerevisiae mtm1, ssq1 and grx5, iron accumulates in a reactive form that potently competes with manganese for binding to SOD2, inactivating the enzyme. Studies in mtm1 mutants indicate that iron inactivation of SOD2 involves the Mrs3p/Mrs4p mitochondrial carriers and iron-binding frataxin (Yfh1p). A small pool of SOD2-reactive iron also exists under normal iron homeostasis conditions and binds SOD2 when mitochondrial manganese is low. The ability to control this reactive pool of iron is critical to maintaining SOD2 activity and has important potential implications for oxidative stress in disorders of iron overload
    corecore